the logic of parametric tests

define the test statistic (e.g. mean)

compare the observed test statistic to a distribution
calculated for random samples that are drawn from a single
(normal) distribution.

the distribution is parametrized based on your sample

ask what is the probability of the data under the model
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4

the logic of parametric tests: example with a t-test

t-distribution under HO: the distribution of the test statistic
calculated for 2 random samples drawn from a single (normal)

distribution Histogram of 1
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the logic of parametric tests: example with a t-test

step 1: extract sample data

Histogram of parrotfishes$log_protrusion[-a)
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the logic of parametric tests: example with a t-test

step 2: calculate the test statistic - 1
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the logic of parametric tests: example with a t-test

step 2: calculate the test statistic - t

compare test statistic to a value from a theoretical distribution
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the logic of parametric tests

define the test statistic (e.qg. mean)

compare the observed test statistic to a distribution
caleulated for random samples that are drawn from a
single (normal) distribution.

ask what is the probability of the data under the mydel

This is where all the assumptions (normality,
homogeneity of avarice) come from!




Assumptions: f-test

1) normality of the data

2) samples are independent

its possible to test the 1st assumption using histograws,
qqplot, and tests for normality (e.g. Shapiro-Wilk test)

often, the problem is lack of power due to small n



Assumptions: ANOVA

1) normality of the data
2) samples are independent

3) homogeneity of variance (critical)

its possible to test the 1st assumption using histograms,
qqplot, and tests for normality. power problem wmore
extreme

its eritical to test for homogeneity of variance
(leveneTest in library car)



Assumptions: regression

1) normality of the residvals
2) samples are independent

3) homogeneity of variance

it is generally difficult to test regression assumptions.

its possible to test the 1st assumption using histograwms,
qqplot, and tests for normality on residuals.

remewber to think about power



Assumptions: regression

1) normality of the residvals
2) samples are independent

3) homogeneity of variance

Response variable

Covariate



Assumptions: regression

1) normality of the residvals
2) samples are independent

3) homogeneity of variance

Response variable

model=Im(Y~X)

hist(model$residuals) Covariate

plot(model%fitted.values ,Y)

points in extreme x values have strong leverage



More assumptions: regression

1) normality of the residvals
2) samples are independent

3) homoageneity of variance

400 =
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S0 +

0

4) X is known with no error

fecundity

0 160 ?60 36p 400
population density
library(Imodel2)

Imodel2(density~ fecundity, data=data, nperm=99)



More assumptions: regression

Call: 1lmodel2(formula = Predicted_by_model ~ Survival, data =
mod2ex1, nperm = 99)

n =54 r =0.8387315 «r-square = 0.7034705
Parametric P-values: 2-tailed = 2.447169e-15 1-tailed = 1.223585e-15
Angle between the two OLS regression lines = 9.741174 degrees

Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
A permutation test of r is equivalent to a permutation test of the OLS slope

P-perm for SMA = NA because the SMA slope cannot be tested

Regression results

Method Intercept Slope Angle (degrees) P-perm (1-tailed)
1 OLS 0.6852956 0.6576961 33.33276 0.01
2 MA 0.4871990 0.7492103 36.84093 0.01

M . 1513}

NA

Confidence intervals
Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope

1 OLS 0.4256885 0.9449028 0.5388717 0.7765204
2 MA 0.1725753 0.7633080 0.6216569  0.8945561
3 SMA 0.1349629 0.6493905 0.6742831 0.9119318

Eigenvalues: 0.1332385 0.01090251

H statistic used for computing C.I. of MA: 0.007515993

library(Imodel2)
Imodel2(density~ fecundity, data=data, nperm=99)



More assumptions: regression

For species data, samples cannot be truly considered

independent, because they share a common history

its possible to account for this correlation if phylogenetic

information is available

If this is applicable for your data, learn more at

http:/enwikipedia.org/ wiki/Phylogenetic_comparative_methods
or here

http:/bodegaphylo.wikispot.org/Phylogenetic_Comparative_Methods
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http://bodegaphylo.wikispot.org/Phylogenetic_Comparative_Methods

What if my assumptions are invalid?



the logic of parametric tests

define the test statistic (e.qg. mean)

compare the observed test statistic to a distribution
caleulated for random samples that are drawn from a
single (normal) distribution.

ask what is the probability of the data under the mydel

Can | compare my data to another distribution?




Permutation, Montecarlo, and bootstrap: what’s the deal?

Permutation & randowmization tests: generating the probability
of test statistics from the data, rather than a theoretical
distribution

Montecarlo: generating the probability of test statistics from
the process, rather than a theoretical distribution

Bootstrap, Jackknife: estimating bias and precision of
estimates from the data, rather than a theoretical distribution
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Permutation, Montecarlo, and bootstrap: what’s the deal?

Permutation & randowmization tests: generating the probability
of test statistics from the data, rather than a theoretical
distribution

Montecarlo: generating the probability of test statistics from
the process, rather than a theoretical distribution

Bootstrap, Jackknife: estimating bias and precision of
estimates from the data, rather than a theoretical distribution



the logic of randomisation tests

define the test statistic (e.qg. mean)

shuffle the data, extract test statistic

repeat for all possible permutations (permutation test) or
a sub-sample of them (randomization)

ask what is the probability of the observed test
statistics under the generated distribution
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4

the logic of randomisation fests: example with a t-test

step 1: extract sample data

Histogram of parrotfishes$log_protrusion[-a)
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the logic of randomisation fests: example with a t-test

step 2: shuffle the data, extract the test statistic. repeat.

iteration 1
iteration 2
iteration 3
iteration 4
iteration 9
iteration 6

iteration 7

iteration 8

iteration 1000
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the logic of parametric tests

ask what is the probability of the observed test
statistics under the generated distribution

Histogram of x[3, ]
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the logic of randomisation tests: example with a t-test

define the test statistic (e.qg. mean)

shuffle the data, extract test statistic

repeat for all possible permutations (permutation test) or
a sub-sample of them (randomization) \

ask what is the probability of the observed test
statistics under the generated distribution

No assumptions regarding the distribution of population




the logic of randomisation tests: example with a t-test

step 1: extract sample data

real.diff=(data$dependent[group0]-data$Sdependent[group1])



the logic of randomisation tests: example with a t-test

step 2: shuffle the data, extract the test statistic.

randomvector=sample(n)
mock.data=data$dependent[randomvector]
mock.diff=(data$Sdependent[group0]-data$dependent[group0])




the logic of randomisation tests: example with a t-test

step 2: shuffle the data, extract the test statistic. repeat

all.diff=matrix(NA,1000,1)

for (iin 1:1000){

randomvector=sample(n)
mock.data=data$dependent[randomvector]
mock.diff=(data$dependent[group0]-data$dependent[group0])
all.diff[i]l=mock.diff

}



the logic of randomisation tests: example with a t-test

ask what is the probability of the observed test
statistics under the generated distribution

p=(length(which(all.diff > real.diff)) + length(which(all.diff < -real.diff)))/1000



the logic of randomisation tests: example with a t-test

define the test statistic (e.qg. mean)

shuffle the data, extract test statistic \

repeat for all possible permutations (permutation test) or
a sub-sample of them (randomization)

ask what is the probability of the observed test
statistics under the generated distribution

possible to choose other statistics e.q. (t) or (f)




Permutation, Montecarlo, and bootstrap: what’s the deal?

Permutation & randomization tests: generating the probability
of test statistics from the data, rather than a theoretical
distribution

Montecarlo: generating the probability of test statistics from
the process, rather than a theoretical distribution

Bootstrap, Jackknife: estimating bias and precision of
estimates from the data, rather than a theoretical distribution



the logic of randomisation tests: example using Lloyd’s index

define the test statistic (e.g. Lloyd’s index)

model the process. for example, place ‘organisms” randowmly
on a grid, with parameters (density) matching your’s

calculate the test statistic (Lloyd’s index)

repeat multiple times

ask what is the probability of the observed test statistics
under the generated distribution



the logic of randomisation tests: example using Lloyd’s index

define the test statistic (e.g. Lloyd’s index)
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the logic of randomisation tests: example using Lloyd’s index

place ‘organisms” randowmly on a grid, with parameters
(density) matching yours. calculate Lloyd’s
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the logic of randomisation tests: example using Lloyd’s index

define the test statistic (e.9. _ =% j H
Lloyd’s index) g 3 .

place ‘organisms” randowmly
on a grid, with parameters L= 1.06 L= 112 1=0.97
(density) matching your’s

calculate Lloyd’s index )
repeat multiple times . - 1 g
1=0.99 1= 1.02 L= 1.01

0.0 04 0.8 0.0 0.4 0.8 0.0 0.4 0.8



the logic of randomisation tests: example using Lloyd’s index

define the test statistic (e.g. Lloyd’s index)

model the process. for example, place ‘organisms”
randowmly on a grid, with parameters (density)
matching your’s

calculate the test statistic (Lloyd’s index)

repeat multiple times

ask what is the probability of the
observed test statistics under the
generated distribution
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the logic of randomisation tests: example using Lloyd’s index

define the test statistic (e.g. Lloyd’s index)

model the process. for example, place ‘organisms” randomly on a
grid, with parameters (density) matehing your’s \\

calculate the test statistic (Lloyd’s index)

repeat multiple times

ask what is the probability of the observed test statistics
under the generated distribution

one can make more complex models, i.e. place organisms that
have an interaction between them



Permutation, Montecarlo, and bootstrap: what’s the deal?

Permutation & randomization tests: generating the probability
of test statistics from the data, rather than a theoretical
distribution

Montecarlo: generating the probability of test statistics from
the process, rather than a theoretical distribution

Bootstrap, Jackknife: estimating bias and precision of
parameters from the data, rather than a theoretical
distribution



the logic of bootstrap

compute the parameter of interest (e.g. number of species)

from your n samples. the sample estimate is S.

sample (with replacement) n samples from your original
dataset

calculate the parameter of interest: Sp

repeat B times (For SE and bias estimation 50-100, For Cl caleulation 1000)

Use the results to generate an empirical sampling distribution

of S.



the logic of bootstrap

The bootstrap estimate of the parameter Shs = %E S

The bootstrap standard error (i.e. the it
e : s.ess(S) = \/——E(SZ--S;,S)
standard deviation of the bootstrap estimate) B-14

The bootstrap estimate of the bias: bis = Sps— S

The bias corrected estimate: S (S =)= 28 L i

Definition: Bias=S_hat - S; where S is the true parameter. Hence, S=S_hat - bias where
the bias is estimated by (S_hat_bs - §_hat)



