the logic of parametric tests
define the test statistic (e.g. mean)
compare the observed test statistic to a distribution
calculated for random samples that are drawn from a single (normal) distribution.
the distribution is parametrized based on your sample
ask what is the probability of the data under the model
the logic of parametric tests: example with a t-test
t-distribution under HO: the distribution of the test statistic
calculated for 2 random samples drawn from a single (normal)
distribution

Group 0

Group 1

the logic of parametric tests: example with a t-test

step 1: extract sample dała

	mean	var	diff
group0	-0.036	0.0037	-0.134
groupl	-0.17	0.004	

Histogram of parrotfishes\$log_protrusion[-a]

Group 0
Group 1

the logic of parametric tests: example with a t-test

step 2: calculate the test statistic - \dagger

$$
t=\frac{\overline{\mathbf{X}}_{1}-\overline{\mathbf{X}}_{2}}{\sqrt{\frac{s_{1}{ }^{2}}{\mathrm{n}_{1}}+\frac{\mathbf{s}_{2}^{2}}{\mathbf{n}_{2}}}}
$$

	mean	var	diff
group0	-0.036	0.0037	-0.134
groupl	-0.17	0.004	

the logic of parametric tests: example with a t-test

step 2: calculate the test statistic - \dagger
compare test statistic to a value from a theoretical distribution

	mean	var	diff
group0	-0.036	0.0037	-0.134
groupl	-0.17	0.004	

$$
t=\frac{\overline{\mathbf{X}}_{1}-\overline{\mathbf{X}}_{2}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{\mathbf{n}_{2}}}}
$$

$t=5.4747, \mathrm{df}=12.119, \mathrm{p}-$ value $=0.000137$
the logic of parametric tests
define the test statistic (e.g. mean)
compare the observed test statistic to a distribution calculated for random samples that are drawn from a single (normal) distribution.
ask what is the probability of the data under the mpdel
This is where all the assumptions (normality, homogeneity of avarice) come from!

Assumptions: t-test

1) normality of the data
2) samples are independent
its possible to test the Ist assumption using histograms, qqplot, and tests for normality (e.g. Shapiro-Wilk test)
often, the problem is lack of power due to small n

Assumptions: ANOVA

1) normality of the data
2) samples are independent
3) homogeneity of variance (critical)
its possible to test the Ist assumption using histograms, qqplot, and tests for normality. power problem more extreme
its critical to test for homogeneity of variance
(leveneTest in library car)

Assumptions: regression

1) normality of the residuals
2) samples are independent
3) homogeneity of variance
it is generally difficult to test regression assumptions.
its possible to test the 1st assumption using histograms, qqplot, and tests for normality on residuals.
remember to think about power

Assumptions: regression

1) normality of the residuals
2) samples are independent
3) homogeneity of variance

Assumptions: regression

1) normality of the residuals

2) samples are independent
3) homogeneity of variance
model=Im(Y~X)
hist(model\$residuals)

plot(model\$fitted.values ,Y)

More assumptions: regression

1) normality of the residuals

2) samples are independent
3) homogeneity of variance
4) X is known with no error
library(Imodel2)

Imodel2(density~ fecundity, data=data, nperm=99)

More assumptions: regression

```
Call: lmodel2(formula = Predicted_by_model ~ Survival, data =
mod2ex1, nperm = 99)
n = 54 r = 0.8387315 r-square = 0.7034705
Parametric P-values: 2-tailed = 2.447169e-15 1-tailed = 1.223585e-15
Angle between the two OLS regression lines = 9.741174 degrees
Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
A permutation test of r is equivalent to a permutation test of the OLS slope
P-perm for SMA = NA because the SMA slope cannot be tested
Regression results
\begin{tabular}{|rrrrrr}
\multicolumn{7}{c}{ Method } & Intercept & Slope & Angle (degrees) & P-perm (1-tailed) \\
\hline 1 & OLS & 0.6852956 & 0.6576961 & 33.33276 & 0.01 \\
2 & MA & 0.4871990 & 0.7492103 & 36.84093 & 0.01 \\
\hline 3 & SMA & 0.4115541 & 0.7841557 & 38.10197 & NA
\end{tabular}
Confidence intervals
    Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope
1 OLS \(0.4256885 \quad 0.9449028 \quad 0.53887170 .7765204\)
\begin{tabular}{llllll}
2 & MA & 0.1725753 & 0.7633080 & 0.6216569 & 0.8945561
\end{tabular}
\begin{tabular}{llllll}
3 & SMA & 0.1349629 & 0.6493905 & 0.6742831 & 0.9119318
\end{tabular}
Eigenvalues: 0.13323850 .01090251
```

H statistic used for computing C.I. of MA: 0.007515993

More assumptions: regression

For species data, samples cannot be truly considered independent, because they share a common history
its possible to account for this correlation if phylogenetic information is available

If this is applicable for your data, learn more at
http://en.wikipedia.org/wiki/Phylogenetic_comparative_methods
or here
http://bodegaphylo.wikispot.org/Phylogenetic_Comparative_Methods

What if my assumptions are invalid?

the logic of parametric tests
define the test statistic (e.g. mean)
compare the observed test statistic to a distribution calculated for random samples that are drawn from a single (normal) distribution.
ask what is the probability of the data under the model

Can I compare my data to another distribution?

Permutation, Montecarlo, and bootstrap: what's the deal?
Permutation \& randomization tests: generating the probability of test statistics from the data, rather than a theoretical distribution

Montecarlo: generating the probability of test statistics from the process, rather than a theoretical distribution

Bootstrap, Jackknife: estimating bias and precision of estimates from the data, rather than a theoretical distribution

Permutation, Montecarlo, and bootstrap: what's the deal?

Permutation \& randomization tests: generating the probability of test statistics from the data, rather than a theoretical distribution

Montecarlo: generating the probability of test statistics from the process, rather than a theoretical distribution

Bootstrap, Jackknife: estimating bias and precision of estimates from the data, rather than a theoretical distribution
the logic of randomisation tests
define the test statistic (e.g. mean)
shuffle the data, extract test statistic
repeat for all possible permutations (permutation test) or a sub-sample of them (randomization)
ask what is the probability of the observed test statistics under the generated distribution
the logic of randomisation tests: example with a t-test
step 1: extract sample data

	mean	var	diff
group0	-0.036	0.0037	-0.134
groupl	-0.17	0.004	

Group 0
Group 1
the logic of randomisation tests: example with a t-test
step 2: shuffle the data, extract the test statistic. repeat.

	group0	groupl	diff
iteration 1	0.8023	0.2460	0.5563
iteration 2	0.3252	0.9017	-0.5764
iteration 3	0.6556	0.7817	-0.1261
iteration 4	0.9292	0.2860	0.6432
iteration 5	0.9953	0.9452	0.0501
iteration 6	0.2650	0.8852	-0.6201
iteration 7	0.8313	0.9650	-0.1336
iteration 8	0.4534	0.6516	-0.1981
iteration 1000	0.8300	0.7998	0.0301

the logic of parametric tests

ask what is the probability of the observed test statistics under the generated distribution

Min. :-0.1198963
Ist Qu.:-0.0235121
Median : 0.0010862
Mean :- 0.0003389
3rd Qu.: 0.0223127
Max. : 0.1062735

Histogram of $\mathrm{x}[3$,

the logic of randomisation tests: example with a t-test
define the test statistic (e.g. mean)
shuffle the data, extract test statistic
repeat for all possible permutations (permutation test) or a sub-sample of them (randomization)
ask what is the probability of the observed test statistics under the generated distribution

No assumptions regarding the distribution of population
the logic of randomisation tests: example with a t-test

step 1: extract sample data

real.diff=(data\$dependent[group0]-data\$dependent[group1])
the logic of randomisation tests: example with a t-test

step 2: shuffle the data, extract the test statistic.

randomvector=sample(n)
mock.data=data\$dependent[randomvector]
mock.diff=(data\$dependent[group0]-data\$dependent[group0])
the logic of randomisation tests: example with a t-test

step 2: shuffle the data, extract the test statistic. repeat

all.diff=matrix(NA, 1000,1)
for (i in 1:1000)\{

```
randomvector=sample(n) mock.data=data\$dependent[randomvector]
mock.diff=(data\$dependent[group0]-data\$dependent[group0]) all.diff[i]=mock.diff
```

the logic of randomisation tests: example with a t-test
ask what is the probability of the observed test statistics under the generated distribution
the logic of randomisation tests: example with a t-test

define the test statistic (e.g. mean)

shuffle the data, extract test statistic
repeat for all possible permutations (permutation test) or a sub-sample of them (randomization)
ask what is the probability of the observed test statistics under the generated distribution
possible to choose other statistics e.g. (t) or (f)

Permutation, Montecarlo, and bootstrap: what's the deal?

Permutation \& randomization tests: generating the probability
of test statistics from the data, rather than a theoretical distribution

Montecarlo: generating the probability of test statistics from the process, rather than a theoretical distribution

Bootstrap, Jackknife: estimating bias and precision of estimates from the data, rather than a theoretical distribution
the logic of randomisation tests: example using Lloyd's index

define the test statistic (e.g. Lloyd's index)

model the process. for example, place "organisms" randomly on a grid, with parameters (density) matching your's
calculate the test statistic (Lloyd's index)
repeat multiple times
ask what is the probability of the observed test statistics under the generated distribution
the logic of randomisation tests: example using Lloyd's index define the test statistic (e.g. Loyd's index)

$$
\mathrm{L}=\frac{\mathrm{V}}{\overline{\mathrm{X}}^{2}}+1-\frac{1}{\overline{\mathrm{X}}}
$$

the logic of randomisation tests: example using Lloyd's index

define the test statistic (e.g. Lloyd's index)

place "organisms" randomly on a grid, with parameters (density) matching yours. calculate Lloyd's

$L=1.06$
the logic of randomisation tests: example using Lloyd's index
define the test statistic le.g. Lloyd's index)
place "organisms" randomly on a grid, with parameters (density) matching your's calculate Lloyd's index repeat multiple times

$L=1.06$

$L=0.99$

$\mathrm{L}=1.12$

$L=1.02$

$\mathrm{L}=0.95$

$\mathrm{L}=1.01$

the logic of randomisation tests: example using Lloyd's index
define the test statistic (e.g. Lloyd's index)
model the process, for example, place "organisms" randomly on a grid, with parameters (density) matching your's
calculate the test statistic (Lloyd's index)
repeat multiple times
ask what is the probability of the observed test statistics under the generated distribution

Histogram of ret_data

the logic of randomisation tests: example using Lloyd's index define the test statistic (e.g. Lloyd's index)
model the process. for example, place "organisms" randomly on a grid, with parameters (density) matching your's calculate the test statistic (Lloyd's index)
repeat multiple times
ask what is the probability of the observed test statistics under the generated distribution
one can make more complex models, i.e. place organisms that have an interaction between them

Permutation, Montecarlo, and bootstrap: what's the deal?

Permutation \& randomization tests: generating the probability
of test statistics from the data, rather than a theoretical distribution

Montecarlo: generating the probability of test statistics from the process, rather than a theoretical distribution

Bootstrap, Jackknife: estimating bias and precision of parameters from the data, rather than a theoretical distribution
the logic of bootstrap
compute the parameter of interest (e.g. number of species) from your n samples. the sample estimate is \hat{s}.
sample (with replacement) n samples from your original dataset
calculate the parameter of interest: \hat{S}_{b}
repeat B times (For SE and bias estimation $50-100$, For Cl calculation 1000)
Use the results to generate an empirical sampling distribution of \hat{s}.

the logic of bootstrap

The bootstrap estimate of the parameter $\quad \hat{S}_{s i s}=\frac{1}{B} \sum_{i=1}^{B} \hat{S}_{i}$
The bootstrap standard error (i.e. the
The bootstrap standard deviation of the bootstrap estimate $)^{\text {s.e.s. }(\hat{S})}=\sqrt{\frac{1}{B-1} \sum_{i=1}^{B}\left(\hat{S}_{i}-\hat{S}_{b_{s}}\right)}$

The bootstrap estimate of the bias:

$$
b_{b s}=\hat{S}_{b s}-\hat{S}
$$

The bias corrected estimate:

$$
\hat{S}-\left(\hat{S}_{b s}-\hat{S}\right)=2 \hat{S}-\hat{S}_{b s}
$$

Definition: Bias=S_hat - S; where S is the true parameter. Hence, $S=S$ _hat - bias where the bias is estimated by (S_hat_bs - S_hat)

