
the logic of parametric tests

define the test statistic (e.g. mean) 

compare the observed test statistic to a distribution 
calculated for random samples that are drawn from a single 
(normal) distribution.  

the distribution is parametrized based on your sample    

ask what is the probability of the data under the model 



the logic of parametric tests: example with a t-test

t-distribution under H0: the distribution of the test statistic 

calculated for 2 random samples drawn from a single (normal) 

distribution 

Group 1 Group 0



the logic of parametric tests: example with a t-test

step 1: extract sample data 

Group 1 Group 0

mean var diff
group0 -0.036 0.0037 -0.134
group1 -0.17 0.004



the logic of parametric tests: example with a t-test

step 2: calculate the test statistic - t 

mean var diff
group0 -0.036 0.0037 -0.134
group1 -0.17 0.004



the logic of parametric tests: example with a t-test

step 2: calculate the test statistic - t 

compare test statistic to a value from a theoretical distribution  

mean var diff
group0 -0.036 0.0037 -0.134
group1 -0.17 0.004

t = 5.4747, df = 12.119, p-value = 0.000137 



the logic of parametric tests

define the test statistic (e.g. mean) 

compare the observed test statistic to a distribution 
calculated for random samples that are drawn from a 
single (normal) distribution. 

ask what is the probability of the data under the model 

This is where all the assumptions (normality, 
homogeneity of avarice) come from! 



Assumptions: t-test

1) normality of the data 

2) samples are independent 

!

its possible to test the 1st assumption using histograms, 
qqplot, and tests for normality (e.g. Shapiro-Wilk test) 

often, the problem is lack of power due to small n 



Assumptions: ANOVA

1) normality of the data 

2) samples are independent 

3) homogeneity of variance (critical) 

!

its possible to test the 1st assumption using histograms, 
qqplot, and tests for normality. power problem more 
extreme 

its critical to test for homogeneity of variance 
(leveneTest in library car)



Assumptions: regression

1) normality of the residuals 

2) samples are independent 

3) homogeneity of variance 

!

it is generally difficult to test regression assumptions. 

its possible to test the 1st assumption using histograms, 
qqplot, and tests for normality on residuals.  

remember to think about power



Assumptions: regression

1) normality of the residuals 

2) samples are independent 

3) homogeneity of variance 

!

when two sites both have the same joint absences, this might

mean that the sites are ecologically similar. On the other hand,

if a species has a highly clumped distribution, or is simply rare,

then joint absences might arise through chance and say

nothing about the suitability of a given site for a species, the

similarity among the habitat needs of species or the ecological

similarity of sites. A high frequency of zeros, thus, can greatly

complicate interpretation of such analyses. Irrespective of our

attitude to joint absences, we need to know whether there are

double zeros in the data. This means that for each species-pair,

we need to calculate how often both had zero abundance for

the same observation (e.g. site). We can either present this

information in a table, or use advanced graphical tools like a

corrgram (Fig. 8; Sarkar 2008). In our waterbird example, the

frequency of double zeros is very high. All the blue circles cor-

respond to species that have more than 80% of their observa-

tions jointly zero. This result is consistent with the biology of

the species studied, most of which form large flocks and have

highly clumped distributions. A PCA would label such species

as similar, although their ecological use of habitats is often

quite different (e.g. Elphick & Oring 1998). Alternative multi-

variate analyses that ignore double zeros are discussed in

Legendre&Legendre (1998) and Zuur et al. (2007).

Step 5: Is there collinearity among the
covariates?

If the underlying question in a study is which covariates are

driving the response variable(s), then the biggest problem to

overcome is often collinearity. Collinearity is the existence of

correlation between covariates. Common examples are covari-

ates like weight and length, or water depth and distance to the

shoreline. If collinearity is ignored, one is likely to end up with

a confusing statistical analysis in which nothing is significant,

but where dropping one covariate can make the others signifi-

cant, or even change the sign of estimated parameters. The

effect of collinearity is illustrated in the context of multiple

linear regression, but similar problems exist in analysis of

variance, mixed effects models, RDA, CCA,GLMs orGAMs.

Table 1 gives the results of amultiple linear regression inwhich
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Fig. 6. Visualization of two underlying assumptions in linear regres-
sion: normality and homogeneity. The dots represent observed values
and a regression line is added. At each covariate value, we assume
that observations are normally distributed with the same spread
(homogeneity). Normality and homogeneity at each covariate value
cannot be verified unless many (>25) replicates per covariate value
are taken, which is seldom the case in ecological studies. In practice, a
histogram of pooled residuals should be made, but this does not pro-
vide conclusive evidence for normality. The same limitations holds if
residuals are plotted vs. fitted values to verify homogeneity.
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Fig. 7. Frequency plot showing the number of observations with a
certain number of waterbirds for the rice field data; 718 of 2035 obser-
vations equal zero. Plotting data for individual species would result in
even higher frequencies of zeros.
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Fig. 8. A corrgram showing the frequency with which pairs of water-
bird species both have zero abundance. The colour and the amount
that a circle has been filled correspond to the proportion of observa-
tions with double zeros. The diagonal running from bottom left to
top right represents the percentage of observations of a variable equal
to zero. Four-letter acronyms represent different waterbird species.
The top bar relates the colours in the graph to the proportion of
zeros.
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Assumptions: regression

1) normality of the residuals 

2) samples are independent 

3) homogeneity of variance 

!

when two sites both have the same joint absences, this might

mean that the sites are ecologically similar. On the other hand,

if a species has a highly clumped distribution, or is simply rare,

then joint absences might arise through chance and say

nothing about the suitability of a given site for a species, the

similarity among the habitat needs of species or the ecological

similarity of sites. A high frequency of zeros, thus, can greatly

complicate interpretation of such analyses. Irrespective of our

attitude to joint absences, we need to know whether there are

double zeros in the data. This means that for each species-pair,

we need to calculate how often both had zero abundance for

the same observation (e.g. site). We can either present this

information in a table, or use advanced graphical tools like a

corrgram (Fig. 8; Sarkar 2008). In our waterbird example, the

frequency of double zeros is very high. All the blue circles cor-

respond to species that have more than 80% of their observa-

tions jointly zero. This result is consistent with the biology of

the species studied, most of which form large flocks and have

highly clumped distributions. A PCA would label such species

as similar, although their ecological use of habitats is often

quite different (e.g. Elphick & Oring 1998). Alternative multi-

variate analyses that ignore double zeros are discussed in

Legendre&Legendre (1998) and Zuur et al. (2007).

Step 5: Is there collinearity among the
covariates?

If the underlying question in a study is which covariates are

driving the response variable(s), then the biggest problem to

overcome is often collinearity. Collinearity is the existence of

correlation between covariates. Common examples are covari-

ates like weight and length, or water depth and distance to the

shoreline. If collinearity is ignored, one is likely to end up with

a confusing statistical analysis in which nothing is significant,

but where dropping one covariate can make the others signifi-

cant, or even change the sign of estimated parameters. The

effect of collinearity is illustrated in the context of multiple

linear regression, but similar problems exist in analysis of

variance, mixed effects models, RDA, CCA,GLMs orGAMs.

Table 1 gives the results of amultiple linear regression inwhich
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Fig. 6. Visualization of two underlying assumptions in linear regres-
sion: normality and homogeneity. The dots represent observed values
and a regression line is added. At each covariate value, we assume
that observations are normally distributed with the same spread
(homogeneity). Normality and homogeneity at each covariate value
cannot be verified unless many (>25) replicates per covariate value
are taken, which is seldom the case in ecological studies. In practice, a
histogram of pooled residuals should be made, but this does not pro-
vide conclusive evidence for normality. The same limitations holds if
residuals are plotted vs. fitted values to verify homogeneity.
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Fig. 7. Frequency plot showing the number of observations with a
certain number of waterbirds for the rice field data; 718 of 2035 obser-
vations equal zero. Plotting data for individual species would result in
even higher frequencies of zeros.
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Fig. 8. A corrgram showing the frequency with which pairs of water-
bird species both have zero abundance. The colour and the amount
that a circle has been filled correspond to the proportion of observa-
tions with double zeros. The diagonal running from bottom left to
top right represents the percentage of observations of a variable equal
to zero. Four-letter acronyms represent different waterbird species.
The top bar relates the colours in the graph to the proportion of
zeros.
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model=lm(Y~X)  
hist(model$residuals)  
plot(model$fitted.values ,Y)	


points in extreme x values have strong leverage 



More assumptions: regression

1) normality of the residuals 

2) samples are independent 

3) homogeneity of variance 

4) X is known with no error  

!

population density

fe
cu

nd
ity

library(lmodel2) 
lmodel2(density~ fecundity, data=data, nperm=99)	




More assumptions: regression

library(lmodel2) 
lmodel2(density~ fecundity, data=data, nperm=99)	


MODEL II REGRESSION USER’S GUIDE, R EDITION 7

This equation was applied to the second data set (also 54 patients) to produce
forecasted survival times. In the present example, these values are compared to
the observed survival times. Fig. 2 shows the scatter diagram with log10(observed
survival time) in abscissa and forecasted values in ordinate. The MA regression line
is shown with its 95% confidence region. The 45⇥ line, which would correspond to
perfect forecasting, is also shown for comparison.

5.1.2. Output file. MA, SMA and OLS equations, 95% C.I., and tests of signifi-
cance, were obtained with the following R commands. The RMA method, which
is optional, was not computed since MA is the only appropriate method in this
example.

> data(mod2ex1)
> Ex1.res <- lmodel2(Predicted_by_model ~ Survival, data=mod2ex1, nperm=99)
> Ex1.res

Model II regression

Call: lmodel2(formula = Predicted_by_model ~ Survival, data =
mod2ex1, nperm = 99)

n = 54 r = 0.8387315 r-square = 0.7034705
Parametric P-values: 2-tailed = 2.447169e-15 1-tailed = 1.223585e-15
Angle between the two OLS regression lines = 9.741174 degrees

Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
A permutation test of r is equivalent to a permutation test of the OLS slope
P-perm for SMA = NA because the SMA slope cannot be tested

Regression results
Method Intercept Slope Angle (degrees) P-perm (1-tailed)

1 OLS 0.6852956 0.6576961 33.33276 0.01
2 MA 0.4871990 0.7492103 36.84093 0.01
3 SMA 0.4115541 0.7841557 38.10197 NA

Confidence intervals
Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope

1 OLS 0.4256885 0.9449028 0.5388717 0.7765204
2 MA 0.1725753 0.7633080 0.6216569 0.8945561
3 SMA 0.1349629 0.6493905 0.6742831 0.9119318

Eigenvalues: 0.1332385 0.01090251

H statistic used for computing C.I. of MA: 0.007515993

The interesting aspect of the MA regression equation in this example is that
the regression line is not parallel to the 45⇥ line drawn in Fig. 2. The 45⇥ line
is not included in the 95% confidence interval of the MA slope, which goes from
tan�1(0.62166) = 31.87 to tan�1(0.89456) = 41.81. The Figure shows that the
forecasting equation overestimated survival below the mean and underestimated it
above the mean. The OLS regression line, which is often (erroneously) used by
researchers for comparisons of this type, would show an even greater discrepancy
(33.3⇥ angle) from the 45⇥ line, compared to the MA regression line (36.8⇥ angle).

5.2. Eagle rays and Macomona bivalves.



More assumptions: regression

For species data, samples cannot be truly considered 
independent, because they share a common history 

its possible to account for this correlation if phylogenetic 
information is available 

If this is applicable for your data, learn more at 

 http://en.wikipedia.org/ wiki/Phylogenetic_comparative_methods  

or here 

 http://bodegaphylo.wikispot.org/Phylogenetic_Comparative_Methods 

population density

fe
cu

nd
ity

species data

http://bodegaphylo.wikispot.org/Phylogenetic_Comparative_Methods


What if my assumptions are invalid?



the logic of parametric tests

define the test statistic (e.g. mean) 

compare the observed test statistic to a distribution 
calculated for random samples that are drawn from a 
single (normal) distribution. 

ask what is the probability of the data under the model 

!

Can I compare my data to another distribution? 



Permutation, Montecarlo, and bootstrap: what’s the deal?
Permutation & randomization tests: generating the probability 
of test statistics from the data, rather than a theoretical 
distribution 

Montecarlo: generating the probability of test statistics from 
the process, rather than a theoretical distribution 

Bootstrap, Jackknife: estimating bias and precision of 
estimates from the data, rather than a theoretical distribution



Permutation, Montecarlo, and bootstrap: what’s the deal?

Permutation & randomization tests: generating the probability 
of test statistics from the data, rather than a theoretical 
distribution 

Montecarlo: generating the probability of test statistics from 
the process, rather than a theoretical distribution 

Bootstrap, Jackknife: estimating bias and precision of 
estimates from the data, rather than a theoretical distribution



the logic of randomisation tests

define the test statistic (e.g. mean) 

shuffle the data, extract test statistic 

repeat for all possible permutations (permutation test) or 
a sub-sample of them (randomization) 

ask what is the probability of the observed test 
statistics under the generated distribution



the logic of randomisation tests: example with a t-test

step 1: extract sample data 

Group 1 Group 0

mean var diff
group0 -0.036 0.0037 -0.134
group1 -0.17 0.004



step 2: shuffle the data, extract the test statistic. repeat.

group0 group1 diff
iteration 1 0.8023 0.2460 0.5563
iteration 2 0.3252 0.9017 -0.5764
iteration 3 0.6556 0.7817 -0.1261
iteration 4 0.9292 0.2860 0.6432
iteration 5 0.9953 0.9452 0.0501
iteration 6 0.2650 0.8852 -0.6201
iteration 7 0.8313 0.9650 -0.1336
iteration 8 0.4534 0.6516 -0.1981

iteration 1000 0.8300 0.7998 0.0301

the logic of randomisation tests: example with a t-test



the logic of parametric tests

ask what is the probability of the observed test 
statistics under the generated distribution

!

Min. :-0.1198963  

1st Qu.:-0.0235121 

Median : 0.0010862  

Mean :-0.0003389 

3rd Qu.: 0.0223127  

Max. : 0.1062735 



define the test statistic (e.g. mean) 

shuffle the data, extract test statistic 

repeat for all possible permutations (permutation test) or 
a sub-sample of them (randomization) 

ask what is the probability of the observed test 
statistics under the generated distribution 

No assumptions regarding the distribution of population

the logic of randomisation tests: example with a t-test



the logic of randomisation tests: example with a t-test

step 1: extract sample data 

real.diff=(data$dependent[group0]-data$dependent[group1])	




step 2: shuffle the data, extract the test statistic.

the logic of randomisation tests: example with a t-test

randomvector=sample(n)  
mock.data=data$dependent[randomvector]  
mock.diff=(data$dependent[group0]-data$dependent[group0])	




step 2: shuffle the data, extract the test statistic. repeat

the logic of randomisation tests: example with a t-test

all.diff=matrix(NA,1000,1)  
!

for (i in 1:1000){	

!
randomvector=sample(n)  
mock.data=data$dependent[randomvector]  
mock.diff=(data$dependent[group0]-data$dependent[group0])	

all.diff[i]=mock.diff  
}	




ask what is the probability of the observed test 
statistics under the generated distribution

p=(length(which(all.diff > real.diff)) + length(which(all.diff < -real.diff)))/1000	


the logic of randomisation tests: example with a t-test



define the test statistic (e.g. mean) 

shuffle the data, extract test statistic 

repeat for all possible permutations (permutation test) or 
a sub-sample of them (randomization) 

ask what is the probability of the observed test 
statistics under the generated distribution 

possible to choose other statistics e.g. (t) or (f)  

the logic of randomisation tests: example with a t-test



Permutation, Montecarlo, and bootstrap: what’s the deal?

Permutation & randomization tests: generating the probability 
of test statistics from the data, rather than a theoretical 
distribution 

Montecarlo: generating the probability of test statistics from 
the process, rather than a theoretical distribution 

Bootstrap, Jackknife: estimating bias and precision of 
estimates from the data, rather than a theoretical distribution



define the test statistic (e.g. Lloyd’s index) 

model the process. for example, place “organisms” randomly 
on a grid, with parameters (density) matching your’s 

calculate the test statistic (Lloyd’s index) 

repeat multiple times 

ask what is the probability of the observed test statistics 
under the generated distribution

the logic of randomisation tests: example using Lloyd’s index



define the test statistic (e.g. Lloyd’s index) 

the logic of randomisation tests: example using Lloyd’s index

אקראי  צבור סדור 



define the test statistic (e.g. Lloyd’s index) 

place “organisms” randomly on a grid, with parameters 
(density) matching yours. calculate Lloyd’s

the logic of randomisation tests: example using Lloyd’s index

L= 1.06 



define the test statistic (e.g. 
Lloyd’s index) 
place “organisms” randomly 
on a grid, with parameters 
(density) matching your’s 
calculate Lloyd’s index 
repeat multiple times 

the logic of randomisation tests: example using Lloyd’s index

L= 1.06 L= 1.12 L= 0.95 

L= 0.99 L= 1.02 L= 1.01 



define the test statistic (e.g. Lloyd’s index) 
model the process. for example, place “organisms” 
randomly on a grid, with parameters (density) 
matching your’s 
calculate the test statistic (Lloyd’s index) 
repeat multiple times 

ask what is the probability of the 
observed test statistics under the 
generated distribution

the logic of randomisation tests: example using Lloyd’s index

Step 4: how frequently the statistics was 
observed under the generated distribution?  

The logic of Montecarlo: example with Lloyd’s



define the test statistic (e.g. Lloyd’s index) 

model the process. for example, place “organisms” randomly on a 
grid, with parameters (density) matching your’s 

calculate the test statistic (Lloyd’s index) 

repeat multiple times 

ask what is the probability of the observed test statistics 
under the generated distribution 

one can make more complex models, i.e. place organisms that 
have an interaction between them

the logic of randomisation tests: example using Lloyd’s index



Permutation, Montecarlo, and bootstrap: what’s the deal?

Permutation & randomization tests: generating the probability 
of test statistics from the data, rather than a theoretical 
distribution 

Montecarlo: generating the probability of test statistics from 
the process, rather than a theoretical distribution 

Bootstrap, Jackknife: estimating bias and precision of 
parameters from the data, rather than a theoretical 
distribution



compute the parameter of interest (e.g. number of species) 
from your n samples. the sample estimate is ŝ. 

sample (with replacement) n samples from your original 
dataset 

calculate the parameter of interest: ŝb 

repeat B times (For SE and bias estimation 50-100, For CI calculation 1000) 

Use the results to generate an empirical sampling distribution 
of ŝ.

the logic of bootstrap



the logic of bootstrap

Definition: Bias=S_hat – S; where S is the true parameter.  Hence, S=S_hat – bias  where 
the bias is estimated by (S_hat_bs - S_hat) 

The bootstrap estimate of the parameter

The bootstrap standard error (i.e. the 
standard deviation of the bootstrap estimate) 

The bootstrap estimate of the bias: 

The bias corrected estimate:


